Calculation for Airfix Vessels for Mains Water Systems

Basic concepts for the calculation of an expansion vessel in a mains water system

The following concepts are important in selecting the right vessel:

System water capacity

The total capacity of the boiler system.

Increase in water volume (in %)

The table below shows data on the water volume increase in percentage points when the temperature of the water increases by between 10 °C and 70 °C.

Increase in temperature	Increase in volume
10 - 40 °C	0.75%
10 - 50 °C	1.18%
10 - 60 °C	1.68%
10 - 70 °C	2.25%

• Expansion volume

The expansion volume is determined in the following way: expansion volume = capacity x increase in volume at the maximum temperature.

Fill level

The pressure of the water supply when cold must be 0.2 bar above the initial pressure of the expansion vessel; otherwise, as the vessel cooled down the total water capacity would not be pushed out of the expansion vessel. That is why there must always be a residual amount of water in the vessel at the lowest operating pressure. This is called the fill level.

Initial pressure of the vessel

This must be 0.2 bar under the pressure of the water supplied when cold.

Residual factor

1 - fill level:

This determines the residual factor of the expansion vessel.

Output

This is an expression of the ratio between gross and net vessel capacity.

Cold water supply pressure - Initial pressure = fill level Cold water supply pressure

This means that the residual factor of the vessel can be determined.

Residual factor = 1 - fill level.

The end pressure must be 10% lower than the set pressure of the safety valve.

The output is calculated using the formula below:

End Cold water pressure - supply pressure - x residual factor = output End pressure Note: pressure in bar absolute

The maximum permissible output for the Airfix D-E/D-E-B vessels is 60% (0.60), while for the A and D vessels it is 63% (0.63).

End pressure

This is the maximum permissible pressure of the system at the vessel itself. The end pressure is equal to 90% of the set pressure of the Prescor boiler valve or the Prescor inlet assembly if it is mounted at the same level as the vessel.

Gross vessel capacity

The gross capacity of the vessel is determined in the following way:

gross capacity of the vessel =

expansion volume output

Example calculation of expansion vessels for mains-water systems

Data

 water capacity of the boiler maximum water temperature cold water supply pressure safety valve set pressure vessel initial pressure (4 - 0.2) end pressure (mean) 	= 150 litres = 70 °C = 4 bar = 8 bar = 3.8 bar = 7.2 bar
Initial vessel pressure End pressure (mean)	= Cold water supp = Set pressure of s
Calculation Increase in volume: at 70 °C is 2.25	% = 150 x 2.25 % =

(cold water supply pressure - initial pressure) Fill level: (cold water supply pressure) Residual factor: 1 - fill level= 1 - 0.04 = 0.96 (end pressure - cold water supply pressure) Output: (end pressure)

Required gross capacity of expansion vessel: 3.4 / 0.375 = 9.1 litres

Airfix expansion vessel to select:

Airfix A 12/4.0 (adjust initial pressure locally to 3.8 bar).

upply pressure - 0.2 bar = 3.8of safety valve x 90% = 7.2 bar.

e) x residual factor = $\frac{(7.2 + 1.0) - (4.0 + 1.0)}{(7.2 + 1.0)} \times 0.96 = 0.375$

© 2013 Flamco BV All rights reserved. We reserve the right to make design and technical specifications of our products change.

Calculation for Airfix Vessels for Mains Water Systems

Basic concepts for the calculation of an expansion vessel in a mains water system

The following concepts are important in selecting the right vessel:

System water capacity

The total capacity of the boiler system.

Increase in water volume (in %)

The table below shows data on the water volume increase in percentage points when the temperature of the water increases by between 10 °C and 70 °C.

Increase in temperature	Increase in volume
10 - 40 °C	0.75%
10 - 50 °C	1.18%
10 - 60 °C	1.68%
10 - 70 °C	2.25%

• Expansion volume

The expansion volume is determined in the following way: expansion volume = capacity x increase in volume at the maximum temperature.

• Fill level

The pressure of the water supply when cold must be 0.2 bar above the initial pressure of the expansion vessel; otherwise, as the vessel cooled down the total water capacity would not be pushed out of the expansion vessel. That is why there must always be a residual amount of water in the vessel at the lowest operating pressure. This is called the fill level.

• Initial pressure of the vessel

This must be 0.2 bar under the pressure of the water supplied when cold.

Residual factor

1 - fill level:

This determines the residual factor of the expansion vessel.

Output

This is an expression of the ratio between gross and net vessel capacity.

Cold water supply pressure - Initial pressure = fill level

Cold water supply pressure

This means that the residual factor of the vessel can be determined.

Residual factor = 1 - fill level.

The end pressure must be 10% lower than the set pressure of the safety valve.

The output is calculated using the formula below:

End Cold water pressure - supply pressure II ______ x residual factor = output End pressure Note: pressure in bar absolute

The maximum permissible output for the Airfix D-E/D-E-B vessels is 60% (0.60), while for the A and D vessels it is 63% (0.63).

• End pressure

This is the maximum permissible pressure of the system at the vessel itself. The end pressure is equal to 90% of the set pressure of the Prescor boiler valve or the Prescor inlet assembly if it is mounted at the same level as the vessel.

Gross vessel capacity

The gross capacity of the vessel is determined in the following way:

expansion volume

gross capacity of the vessel = -

output

Example calculation of expansion vessels for mains-water systems

Data

Calculation

Increase in volume: at 70 °C is 2.25% = 150 x 2.25 % = 3.4 litres Fill level: $\frac{(\text{cold water supply pressure - initial pressure})}{(\text{cold water supply pressure})} = \frac{(4.0 + 1.0) - (3.8 + 1.0)}{(4.0 + 1.0)} = 0.04$ Residual factor: 1 - fill level= 1 - 0.04 = 0.96 Output: $\frac{(\text{end pressure - cold water supply pressure})}{(\text{end pressure})} \times \text{ residual factor} = \frac{(7.2 + 1.0) - (4.0 + 1.0)}{(7.2 + 1.0)} \times 0.96 = 0.375$

Required gross capacity of expansion vessel: 3.4 / 0.375 = 9.1 litres

Airfix expansion vessel to select:

Airfix A 12/4.0 (adjust initial pressure locally to 3.8 bar).

