Sizing Expansion Automats

Basic Concepts for the Calculation of Expansion Automats

To select the right expansion automat it is necessary to understand the following principles:

Static height

This is the height of the system between the connection of the Flexcon expansion appliance and the highest point, measured in water column metres (1 wcm = 0.1 bar).

•	System	water	capa	city
---	--------	-------	------	------

This is the total volume of water in the entire system including heat source, radiators, pipe work etc.

• Increase in water volume (in %)

The table below shows the percentage volume increase of water as temperature increases from 10 $^{\circ}$ C to 110 $^{\circ}$ C.

Expansion volume

The expansion volume is determined in the following way: expansion volume = capacity x increase in volume at the average heating temperature. Example: heating temperature 90/70 °C (average 80 °C) = 2.89%.

Increase in temperature [°C]	Increase in volume [%]
10 - 25	0.35
10 - 30	0.43
10 - 35	0.63
10 - 40	0.75
10 - 45	0.96
10 - 50	1.18
10 - 55	1.42
10 - 60	1.68
10 - 70	2.25
10 - 80	2.89
10 - 90	3.58
10 - 100	4.34
10 - 110	5.16

Flexcon M-K Compressor Curves

Flexcon M-K selection graph. Typical heating installation (nominal characteristics)

Heating/Cooling power

This is the sum of the nominal heating capacities.

Capacity of the expansion automat

The capacity of a pump expansion automat is determined in the following way: capacity of expansion appliance = $1.3 \times expansion$ volume (in the case of the Flexcon M-K / C the factor is 1.4).

The factor of 1.3 is based on the following assumptions:

- The expansion vessel has to hold at least 10% more than the calculated expansion volume.
- The volume of the vessel allows for refilling and min./max. levels.
- Corrections to tolerances which, according to various standards, are admissible for parts of the system.

Flamcomat Pump Curves

Selection diagram Flamcomat. Typical heating installation (nominal characteristics)

FLAMCOMAT

Calculations for Expansion Automats in Heating Installations

EXAMPLE 1

DATA

- heating power	= 1,500 kW
- average heating temperature (90/70 °C)	= 80 °C
- static height	= 20 metres
- system volume	= 15,400 litres
provision for expansion (vessel) situated at	the bettern of the evetern

- provision for expansion (vessel) situated at the bottom of the system.

CALCULATION OF VESSEL CAPACITY

Increase in volume in %	= 2.89%	≈ 2.9%
Expansion volume = $\frac{15,400 \times 2.9}{100}$	= 447 litres	
Required expansion reservoir capacity	= 447 x 1.3	= 581 litres

YOUR CHOICE

Alternative I :	Flamcomat GB 600.	
	Calculation - control unit with pump.	
	Nominal operating pressure = $2 + 1 = 3$ bar.	
	The 1.5 MW - 3 bar point is under the M 02 pump curve	
	(see Flamcomat pump characteristics graph).	
	Selected: Flamcomat GB 600/M 02.	

Alternative II: **M-K/U 600, 6 bar model,** possibly in combination with an ENA 20 de-aeration appliance.

EXAMPLE 2

DATA

- heating power	= 7,000 kW
- average heating temperature (70/40°C)	= 55 °C
- static height	= 37 metres
- system volume	= unknown
- provision for expansion (vessel) situated a	at the bottom of the system.

- system components: mixed utility.

CALCULATION OF VESSEL CAPACITY

System capacity calculation = 7,000 x 10 Increase in volume in $\%$	= 70,000 litres = 1.42%
Expansion volume $=\frac{7,000 \times 1.42}{100}$	= 994 litres
Required expansion reservoir capacity	= 994 x 1.3 = 1,292 litres

YOUR CHOICE

Alternative I :	Flamcomat GB 1600.		
	Calculation - control unit with pump.		
	Nominal operating pressure = $3.7 + 1 = 4.7$ bar.		
	The 7 MW - 4.7 bar point is on the D 20 group curve		
	(see Flamcomat pump characteristics graph).		
	Selected: Flamcomat GB 1600/D 20.		
Alternative II :	M-K/II 1600 6 bar model		

Alternative II: M-K/U 1600, 6 bar model, possibly in combination with an ENA 30 de-aeration appliance.

Calculation for Expansion Automats in Chilled Water Systems

EXAMPLE 1

DATA

- heating power		= 5,400 kW
- system volume		= 95,000 litres
 static height 		= < 5 metres (with vessel above)
- temperature (6/1	2 °C)	= 9 °C
- max. ambient ter	nperature	= 30 °C
- no glycol		
CALCULATION O	F VESSEL CAPACITY	
Increase in volume	e at 30 °C, without glycol	= 0.43%
Expansion volume	$=\frac{95,000 \times 0.43}{100}$	= 409 litres
Required expansion reservoir capacity = $409 \times 1.3 = 531$ litres		
YOUR CHOICE		
Alternative I :	Flexcon M-K/U 600, 6 bar model, possibly in com	bination with an ENA 10 de-aeration appliance.
Alternative II	Calculation - control unit with r	amp

Alternative II:	Calculation - control unit with pump.
	Nominal operating pressure = $0.5 + 1 = 1.5$ bar.
	As the selection table shows heat capacity, the aforementioned cooling capacity will have
	to be converted using a conversion factor of 0.412.
	The selection point is then 5,400 kW x $0.412 = 2,225$ kW (2.2 MW) and 1.5 bar.
	The 2.2 MW - 1.5 bar point is on the M 02 pump curve
	(see Flamcomat pump characteristics graph).
	Selected: Flamcomat GB 600/M 02.