SpaceLogic Venta V212T

Two-way Pressure Balanced Valve, Internal pipe thread PN 16 (232 psi)

The Venta V212T can be used in a wide range of applications, such as heating, cooling, air handling and domestic hot water systems.

The balanced plug allows for a lower force actuator to be fitted.

The valve can handle the following types of media:

- Hot and chilled water.
- Water with antifreeze additives such as glycol.

Specifications

Design	Two-way pressure plug valve
Pressure class	PN 16
Flow characteristic	EQM
Stroke	20 mm
Rangeability Kv/Kv _{min}	>50
Leakage	Tight sealing
ΔPm	400 kPa, water
Environment Max. temperature of medium Min. temperature of medium	120 °C –20 °C
Connections	Internal pipe thread Rp
Main Construction Materials Body Stem Plug Sealing Seat	Nodular iron EN-JS 1030 Stainless steel SS 2346 Brass CW602N EPDM Nodular iron EN-JS 1030
Standard packing box	Venta
Standards/Directives Pressure Equipment Directive	PED 97/23/EC Article 4 (3)

Note: It is the responsibility of the installer or product specifier to verify media compatibility of the valves construction materials with the supplier of water treatment/heat transfer solution.

Available Part Numbers

Size	Kv	Part number			
DN	(1117/11)				
25	10	721 1832 000			
32	16	721 1836 000			
40	25	721 1840 000			
50	38	721 1844 000			

- The rangability is the ratio of Kv and Kv_{min}.
- Kv is the flow through the valve in m³/h at the specified valve lift and at a pressure drop of 100 kPa across the valve.
- Kv_{min} is the minimum controllable flow (m³/h) at a pressure drop of 100 kPa within the range in which the valve characteristics conform to the slope requirements of IEC 60534-1.

Recommendations

- It is recommended to fit a strainer upstream if the valve to increase reliability and to follow waste treatment guidelines as detailed in VDI 2035.
- Valves should be installed in the return pipe to reduce exposure to media temperature extremes.

Life Is On

 If the valve is used for media at temperatures below 0 °C, it should be equipped with a stem heater in order to prevent ice formation on the valve stem.

Spare Parts

Description	Part number		
Stuffing box (max 150 °C)	1 001 0800 0		

Design and Characteristics

The V212T uses a patented design to balance the pressure. This means that only a moderate force is required to operate the valve. The design will also handle solid particles in the fluid in an efficient way.

The plug is guided throughout the lift, which reduces the risk for vibrations. The valve closes with the stem up.

The flow characteristics of the V212T is equal percentage modified.

Cavitation

Cavitation takes place in a valve when the velocity of the flow between the plug and seat increases to the extent that gas bubbles are created in the water.

After the plug and seat the velocity decreases, thus the gas bubbles collapse (implode), generating conciderable noise and causing conciderable wear on the valve.

Use the Cavitation diagram to see if the risk of cavitation exists with the working conditions in the pertinent installation.

Proceed as follows:

- Using the static pressure before the valve (e.g. 1000 kPa), plot the horizontal line to the line for the temperature of the liquid (e.g. 120 °C).
- 2. From the intersection point, plot a vertical line downwards and read off the max.permissible pressure drop across the valve.
- 3. If the computed pressure drop exceeds the value read from the diagram there is risk for cavitation.

Pressure drop that the beginningitation

Pressure drop limit where caviation might occur is dependent on valve inlet pressure and temperature of water.

Actuator Selection

The ability to close at various differential pressures depends on valve size and available stem force. The later is determined by the selected actuator. The table shows performances for different actuator/valve combinations.

 ΔPc = Permissible pressure differential when the valve is closed.

Valve Size	M800 ΔPc	M400 ΔPc
DN	k	Pa
25	1600	800
32	1600	750
40	1600	700
50	1600	600

Installation

The valve should be mounted with flow direction in accordance with the valve marking.

It is recommended to install the valve in the return pipe, in order to avoid exposing the actuator to high temperatures.

The valve must not be installed with the actuator mounted below the valve.

To ensure that suspended solids will not become jammed between the valve plug and seat, a filter should be installed upstream of the valve, and the pipe system should be flushed before the valve is installed.

Part No	Valve Size (DN)	Dimensions (mm)						
		A	В	С	E	Н	К	Weight (kg)
721 1832 000	25	115	79	119	34	20	Rp 1	1.7
721 1836 000	32	130	70	120	35		Rp 1¼	2.2
721 1840 000	40	150	74	127.5	42.5		Rp 1½	3.1
721 1844 000	50	180	84	138	53		Rp 2	4.5

A. Typical installation without local circulating pump.

To provide a good function, the pressure drop across the valve should be no less than half of the available pressure (ΔP). This corresponds to a valve authority of 50%.

B. Typical installation with local circulating pump.

The Kvs value of the valve is to be selected so that the entire available pressure drop (ΔP) falls across the control valve.

Flow and Pressure Drop Chart